Academic Year (2022-2023)

3rd Semester

Nawabegh Al-Riyadh International School

Gr. 8 / A

Subject/ Math

Revision sheet **Model Answer**

Q.1) Solve.

a)

1.
$$x + 5 = 3(x + 1)$$

$$x = 1$$

$$x + 5 = 3(x + 1)$$
 5. $3(x - 5) = 3(2x + 1)$

$$x = -6$$

$$3(x+5) = x+1$$

$$x = -7$$

6.
$$3(x-5) = -3(2x+1)$$

$$x = \frac{12}{9}$$

3.
$$3(x+5) = 3(2x+1)$$

$$x = 4$$

3.
$$3(x+5) = 3(2x+1)$$
 7. $-3(x+5) = -3(2x+1)$

$$x = 4$$

$$4. \ 3(x+5) = 3(2x-1)$$

$$x = 6$$

4.
$$3(x+5) = 3(2x-1)$$
 8. $-3(x-5) = -3(2x+1)$

$$x = -6$$

b)

1)
$$-2x+1=-4x+9$$
 2) $4x+1=5x-2$

2)
$$4x + 1 = 5x - 2$$

3)
$$-4x = -x + 3$$

Answer: 4

Answer: 3

Answer: -1

4) -3x = 5x + 8

5)
$$-5x = 3x + 16$$

6)
$$4x - 1 = -x + 9$$

Answer: -1

Answer: -2

Answer: 2

7) x-4=-5x-28

8)
$$-5x = -2x + 6$$

9)
$$-5x = 2x - 28$$

Answer: -4

Answer:
$$-2$$

Answer: 4

Q.2) Solve each system of linear equations by adding or subtracting.

$$1. \quad x - 5y = 10$$
$$2x + 5y = 5$$

2.
$$x + y = -10$$

 $5x + y = -2$

$$(5, -1)$$

$$(2, -12)$$

3.
$$4x + 10y = 2$$

 $-4x + 8y = 16$

4.
$$-3x-7y=8$$

 $3x-2y=-44$

$$(-12, 4)$$

5.
$$-x + 4y = 15$$

 $3x + 4y = 3$

6.
$$-4x + 11y = 5$$

 $4x - 11y = -5$

(-3, 3)

infinitely many solutions

Q.3)

a)

Determine whether the given ordered pair is a solution of the following system of equations.

$$3x - 2y = 5$$
$$6x - 5y = 10$$

$$y-2x=1$$
$$-3x+y=-1$$

3.
$$(-8, -1)$$
 $7y-4x=3$ yes $5x+y=14$

Q.4) Tell whether the equation has **one**, **zero**, or **infinitely many** solution.

Note:

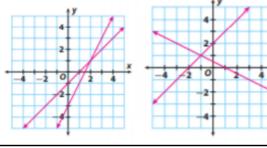
Result	What does this mean?	How many solutions?
x = a	When the value of x is a, the equation is a true statement.	1
a = a	Any value of x makes the equation a true statement.	Infinitely many
$a = b$, where $a \neq b$	There is no value of x that makes the equation a true statement.	0

One Solution	No Solutions	Infinitely many solutions
3x+4=8x-9	6x + 5 = 8 + 6x	10x - 4 = -4 + 10x
-4x-5=6-11x	12 - 15x = -2 - 15x	-2x + 5 = -2x + 5
$9+\frac{1}{2}x=5x-1$	$\frac{5}{4}x - 1 = 1 + \frac{5}{4}x$	7+9x=9x+7

	One Solution $x = a$	No Solutions $a = b$	Infinitely Many Solutions x = x
Equation	7x-3=5x+5	7x-3=7x+5	7x-3=-3+7x
Use properties of equality "Solve"	7x - 3 = 5x + 5 $5x + 2x - 3 = 5x + 5$ $2x - 3 = 5$ $2x - 3 = 5 - 3 + 3$ $2x = 8$ $x + x = 4 + 4$ $x = 4$	7x - 3 = 7x + 5 $2x - 3 = 2x + 5$ $-3 = 5$	7x - 3 = -3 + 7x $7x - 3 = -3 + 7x$ $7x = 7x$ $x = x$

	One Solution $x = a$	No Solutions $a = b$	Infinitely Many Solutions x = x
Equation	3(y+2) = 30	5(2+c) = 45 + 5c	2(a-2)=2a-4
Use properties of equality "Solve"	$3(y+2) = 30$ $\frac{3(y+2)}{3} = \frac{30}{3}$ $y+2 = 10$ $y+2 = 8$ $y = 8$	5(2+c) = 45 + 5c $5(2) + 5(c) = 45 + 5c$ $10 + 5c = 45 + 5c$ $10 + 5c = 45 + 5c$ $10 = 45$	2(a-2) = 2a - 4 $2a - 4 = 2a - 4$ $2a - 4 = 2a - 4$ $-4 = -4$

	One Solution $x = a$	One Solution $x = a$
Equation	2x + 12 = x + 12	You Try! $3y - 7 = y - 7$
Use properties of equality "Solve"	$2x + 12 = x + 12$ $2x + \cancel{2} = x + \cancel{2}$ $2x = x$ $x + \cancel{x} = \cancel{x}$ $x = 0$	3y - 7 = y - 7 $3y = y$ $3y = y$ $y + y + y = y$ $y + y = 0$ $y + y = 0 + 0$ $y = 0$


Q.5) What is the solution to the system of equations shown?

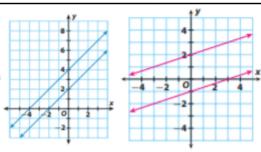
1) one solution

a) **Graph**.....when the lines intersect at a single point. (x,y)

Or

b) **Algebraically**..... x = a

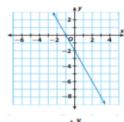
2) no solution

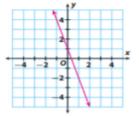

a) **Graph** when the lines are parallel

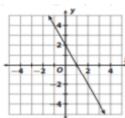
Or

False statement $a \neq b$

2=4

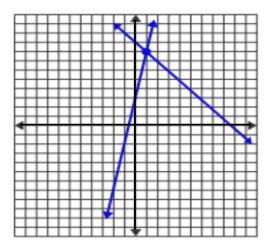



3) infinitely many solutions


a) **Graph** when the lines are the same line

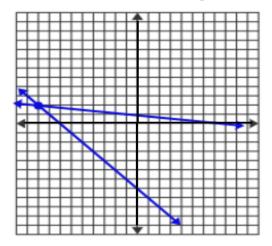
Or

b) <u>Algebraically......</u>
True statement a = b 0 = 0



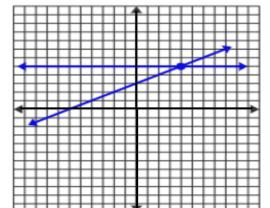
$$y = -x + 9 \qquad y = 5x + 3$$

$$y = 5x + 3$$

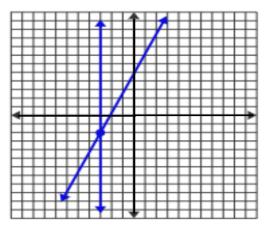


Solution: (1 , 8)

$$y = -x - 7$$

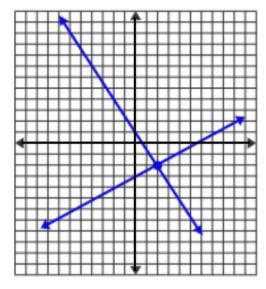

$$y = -x - 7 \qquad y = -\frac{1}{9}x + 1$$

x = -3

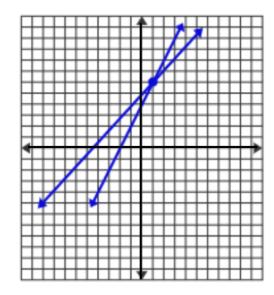

$$y = \frac{1}{2}x + 3$$

$$y = 5$$

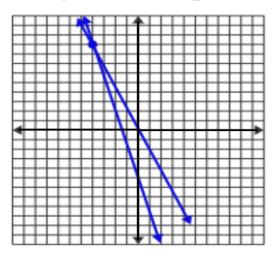
Solution: (_4_,_5_)


$$y = \frac{7}{3}x + 5$$

Solution: (_-3__,_-2__)

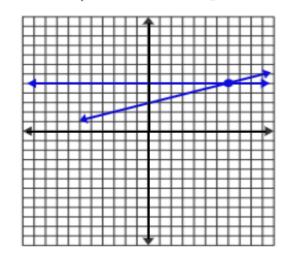

$$y = -\frac{3}{2}x + 1$$
 $y = \frac{1}{2}x - 3$ $y = 2x + 4$ $y = x + 5$

$$y = \frac{1}{2}x - 3$$


$$y = 2x + 4$$

$$y = x + 5$$

$$y = -\frac{9}{4}x$$


$$y = -\frac{9}{4}x \qquad y = -\frac{7}{2}x - 5$$

Solution: (_4_,_9_)

$$y = \frac{2}{7}x + 3 \qquad y = 5$$

$$y = 5$$

